Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 794
Filtrar
1.
Adv Sci (Weinh) ; : e2309824, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561966

RESUMO

Precise agriculture based on intelligent agriculture plays a significant role in sustainable development. The agricultural Internet of Things (IoTs) is a crucial foundation for intelligent agriculture. However, the development of agricultural IoTs has led to exponential growth in various sensors, posing a major challenge in achieving long-term stable power supply for these distributed sensors. Introducing a self-powered active biochemical sensor can help, but current sensors have poor sensitivity and specificity making this application challenging. To overcome this limitation, a triboelectric nanogenerator (TENG)-based self-powered active urea sensor which demonstrates high sensitivity and specificity is developed. This device achieves signal enhancement by introducing a volume effect to enhance the utilization of charges through a novel dual-electrode structure, and improves the specificity of urea detection by utilizing an enzyme-catalyzed reaction. The device is successfully used to monitor the variation of urea concentration during crop growth with concentrations as low as 4 µm, without being significantly affected by common fertilizers such as potassium chloride or ammonium dihydrogen phosphate. This is the first self-powered active biochemical sensor capable of highly specific and highly sensitive fertilizer detection, pointing toward a new direction for developing self-powered active biochemical sensor systems within sustainable development-oriented agricultural IoTs.

2.
Comput Biol Med ; 174: 108418, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38593641

RESUMO

Domain adaptation (DA) is commonly employed in diabetic retinopathy (DR) grading using unannotated fundus images, allowing knowledge transfer from labeled color fundus images. Existing DAs often struggle with domain disparities, hindering DR grading performance compared to clinical diagnosis. A source-free active domain adaptation method (SFADA), which generates features of color fundus images by noise, selects valuable ultra-wide-field (UWF) fundus images through local representation matching, and adapts models using DR lesion prototypes, is proposed to upgrade DR diagnostic accuracy. Importantly, SFADA enhances data security and patient privacy by excluding source domain data. It reduces image resolution and boosts model training speed by modeling DR grade relationships directly. Experiments show SFADA significantly improves DR grading performance, increasing accuracy by 20.90% and quadratic weighted kappa by 18.63% over baseline, reaching 85.36% and 92.38%, respectively. This suggests SFADA's promise for real clinical applications.

3.
Anal Chem ; 96(15): 5960-5967, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38581372

RESUMO

Nonobstructive azoospermia (NOA) is an important cause of infertility, and intracytoplasmic sperm injection (ICSI) is the mainstay of treatment for these patients. In cases where a sufficient number of sperm (usually 1-2) is not available, the selection of oocytes for ICSI is a difficult problem that must be solved. Here, we constructed a dual-activated oxidative stress-responsive AIE probe, b-PyTPA. The strong donor-acceptor configuration of b-PyTPA leads to twisted intramolecular charge transfer (TICT) effect that quenches the fluorescence of the probe, however, H2O2 would specifically remove the boronatebenzyl unit and release a much weaker acceptor, which inhibits TICT and restores the fluorescence. In addition, the presence of a pyridine salt makes b-PyTPA more hydrophilic, whereas removal of the pyridine salt increases the hydrophobicity of PyTPA, which triggers aggregation and further enhances fluorescence. Thus, the higher the intracellular level of oxidative stress, the stronger the fluorescence. In vitro, this dual-activated fluorescent probe is capable of accurately detecting senescent cells (high oxidative stress). More importantly, b-PyTPA was able to characterize senescent oocytes, as assessed by the level of oxidative stress. It is also possible to identify high quality oocytes from those obtained for subsequent ICSI. In conclusion, this dual-activated oxidative stress-assessment probe enables the quality assessment of oocytes and has potential application in ICSI.


Assuntos
Infertilidade Masculina , Humanos , Masculino , Infertilidade Masculina/etiologia , Infertilidade Masculina/terapia , Peróxido de Hidrogênio , Sêmen , Espermatozoides , Oócitos , Piridinas/farmacologia
4.
Biosens Bioelectron ; 256: 116262, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621340

RESUMO

Lateral flow immunoassays (LFIAs) are an essential and widely used point-of-care test for medical diagnoses. However, commercial LFIAs still have low sensitivity and specificity. Therefore, we developed an automatic ultrasensitive dual-color enhanced LFIA (DCE-LFIA) by applying an enzyme-induced tyramide signal amplification method to a double-antibody sandwich LFIA for antigen detection. The DCE-LFIA first specifically captured horseradish peroxidase (HRP)-labeled colored microspheres at the Test line, and then deposited a large amount of tyramide-modified signals under the catalytic action of HRP to achieve the color superposition. A limit of detection (LOD) of 3.9 pg/mL and a naked-eye cut-off limit of 7.8 pg/mL were achieved for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein. Additionally, in the inactivated virus detections, LOD equivalent to chemiluminescence (0.018 TCID50/mL) was obtained, and it had excellent specificity under the interference of other respiratory viruses. High sensitivity has also been achieved for detection of influenza A, influenza B, cardiac troponin I, and human chorionic gonadotrophin using this DCE-LFIA, suggesting the assay is universally applicable. To ensure the convenience and stability in practical applications, we created an automatic device. It provides a new practical option for point-of-care test immunoassays, especially ultra trace detection and at-home testing.


Assuntos
Técnicas Biossensoriais , COVID-19 , Limite de Detecção , SARS-CoV-2 , Imunoensaio/instrumentação , Imunoensaio/métodos , Humanos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , COVID-19/virologia , Peroxidase do Rábano Silvestre/química , Troponina I/sangue , Troponina I/análise , Testes Imediatos , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/análise , Gonadotropina Coriônica/análise , Gonadotropina Coriônica/sangue , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/imunologia , Fosfoproteínas
5.
J Am Chem Soc ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606686

RESUMO

Ion selectivity is the basis for designing smart nanopore/channel-based devices, e.g., ion separators and biosensors. Quantitative characterization of ion selectivities in nanopores often employs the Nernst or Goldman-Hodgkin-Katz (GHK) equation to interpret transmembrane potentials. However, the direction of the measured transmembrane potential drop is not specified in these equations, and selectivity values calculated using absolute values of transmembrane potentials do not directly reveal the ion for which the membrane is selective. Moreover, researchers arbitrarily choose whether to use the Nernst or GHK equation and overlook the significant differences between them, leading to ineffective quantitative comparisons between studies. This work addresses these challenges through (a) specifying the transmembrane potential (sign) and salt concentrations in terms of working and reference electrodes and the solutions in which they reside when using the Nernst and GHK equations, (b) reporting of both Nernst-selectivity and GHK-selectivity along with solution compositions and transmembrane potentials when comparing different nanopores/channels, and (c) performing simulations to define an ideal selectivity for nanochannels. Experimental and modeling studies provide significant insight into these fundamental equations and guidelines for the development of nanopore/channel-based devices.

6.
Adv Mater ; : e2401772, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38634168

RESUMO

High-performance covalent organic framework (COF) fibers are demanded for an efficient capturing of blue osmotic power because of their excellent durability, simple integration, and large scalability. However, the scalable production of COF fibers is still very challenging due to the poor solubility and fragile structure of COFs. Herein, for the first time, it is reported that COF dispersions can be continuously processed into macroscopic, meter-long, and pure COF fibers using a wet spinning approach. The two presented COF fibers can be directly used for capturing of osmotic energy, avoiding the production of composite materials that require other additives and face challenges such as phase separation and environmental issues induced by the additives. A COF fiber exhibits power densities of 70.2 and 185.3 W m-2 at 50-fold and 500-fold salt gradients, respectively. These values outperform those of most reported systems, which indicate the high potential of COF fibers for capturing of blue osmotic energy.

7.
Front Neurol ; 15: 1367974, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638307

RESUMO

Corona Virus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has presented unprecedented challenges to the world. Changes after acute COVID-19 have had a significant impact on patients with neurodegenerative diseases. This study aims to explore the mechanism of neurodegenerative diseases by examining the main pathways of central nervous system infection of SARS-CoV-2. Research has indicated that chronic inflammation and abnormal immune response are the primary factors leading to neuronal damage and long-term consequences of COVID-19. In some COVID-19 patients, the concurrent inflammatory response leads to increased release of pro-inflammatory cytokines, which may significantly impact the prognosis. Molecular imaging can accurately assess the severity of neurodegenerative diseases in patients with COVID-19 after the acute phase. Furthermore, the use of FDG-PET is advocated to quantify the relationship between neuroinflammation and psychiatric and cognitive symptoms in patients who have recovered from COVID-19. Future development should focus on aggressive post-infection control of inflammation and the development of targeted therapies that target ACE2 receptors, ERK1/2, and Ca2+.

8.
Mol Ther ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38659223

RESUMO

Glaucoma is characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons, and its risk increases with aging. Yet comprehensive insights into the complex mechanisms are largely unknown. Here, we found that anti-aging molecule Sirt6 was highly expressed in RGCs. Deleting Sirt6 globally or specifically in RGCs led to progressive RGC loss and optic nerve degeneration during aging, despite normal intraocular pressure (IOP), resembling a phenotype of normal tension glaucoma. These detrimental effects were potentially mediated by accelerated RGC senescence through Caveolin-1 upregulation and by the induction of mitochondrial dysfunction. In mouse models of high tension glaucoma, Sirt6 level was decreased after IOP elevation. Genetic overexpression of Sirt6 globally or specifically in RGCs significantly attenuated high tension-induced degeneration of RGCs and their axons, whereas partial or RGC-specific Sirt6 deletion accelerated RGC loss. Importantly, therapeutically targeting Sirt6 with pharmacological activator or AAV2-mediated gene delivery ameliorated high IOP-induced RGC degeneration. Together, our studies reveal a critical role of Sirt6 in preventing RGC and optic nerve degeneration during aging and glaucoma, setting the stage for further exploration of Sirt6 activation as a potential therapy for glaucoma.

9.
Acta Pharm Sin B ; 14(3): 1132-1149, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486992

RESUMO

Cancer, a complex and heterogeneous disease, arises from genomic instability. Currently, DNA damage-based cancer treatments, including radiotherapy and chemotherapy, are employed in clinical practice. However, the efficacy and safety of these therapies are constrained by various factors, limiting their ability to meet current clinical demands. Metal nanoparticles present promising avenues for enhancing each critical aspect of DNA damage-based cancer therapy. Their customizable physicochemical properties enable the development of targeted and personalized treatment platforms. In this review, we delve into the design principles and optimization strategies of metal nanoparticles. We shed light on the limitations of DNA damage-based therapy while highlighting the diverse strategies made possible by metal nanoparticles. These encompass targeted drug delivery, inhibition of DNA repair mechanisms, induction of cell death, and the cascading immune response. Moreover, we explore the pivotal role of physicochemical factors such as nanoparticle size, stimuli-responsiveness, and surface modification in shaping metal nanoparticle platforms. Finally, we present insights into the challenges and future directions of metal nanoparticles in advancing DNA damage-based cancer therapy, paving the way for novel treatment paradigms.

10.
Diabetes Metab Syndr ; 18(3): 102975, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38492549

RESUMO

OBJECTIVE: To investigate the relationship of moderate physical activity (MPA), vigorous physical activity (VPA), and muscle strengthening activity (MSA), independently and jointly, with all-cause, cardiovascular disease (CVD), and non-CVD mortality in individuals with type 2 diabetes (T2D). MATERIAL AND METHODS: This cohort study included 47,538 adults with T2D and 561,963 adults without T2D from the National Health Interview Survey 1997-2018 who provided data on self-reported physical activity (PA). Mortality data were obtained from the National Death Index through 2019. Cox regression was used to estimate hazard ratio (HR) and 95% confidence interval (CI). RESULTS: In analyses mutually adjusted, versus no MPA adults with T2D, performing the recommendations of MPA (150-299 min/week) associated with lower all-cause mortality (HR, 0.72; 95% CI, 0.66-0.78), CVD mortality (HR, 0.68; 95% CI, 0.58-0.79), and non-CVD mortality (HR, 0.72; 95% CI, 0.65-0.79). Similar benefits were observed in those meeting recommendations for VPA and MSA. Higher levels of PA beyond current recommendations may provide a few additional benefits without adverse effects on mortality risk, regardless of diabetes onset age, duration of diabetes, and medication status. The joint analysis indicates that combining MSA with aerobic PA could further lower mortality risk, and lowest all-cause mortality was observed among individuals engaging in either 75-150 min/week of VPA and 1 time/week of MSA (HR, 0.30; 95% CI, 0.13-0.70) or 150-299 min/week of MPA and 1 time/week of MSA (HR, 0.33; 95% CI, 0.20-0.55). CONCLUSION: Our study supports the current PA guidelines and suggests that there may be limited benefits gained from exercising beyond recommended levels in adults with T2D, combining recommended levels of aerobic and resistance exercises could yield the greatest benefits.

11.
Int Immunopharmacol ; 131: 111869, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38492343

RESUMO

BACKGROUND AND PURPOSE: It has been reported activation of NLRP3 inflammasome after intracerebral hemorrhage (ICH) ictus exacerbates neuroinflammation and brain injury. We hypothesized that inhibition of NLRP3 by OLT1177 (dapansutrile), a novel NLRP3 inflammasome inhibitor, could reduce brain edema and attenuate brain injury in experimental ICH. METHODS: ICH was induced by injection of autologous blood into basal ganglia in mice models. Sixty-three C57Bl/6 male mice were randomly grouped into the sham, vehicle, OLT1177 (Dapansutrile, 200 mg/kg intraperitoneally) and treated for consecutive three days, starting from 1 h after ICH surgery. Behavioral test, brain edema, brain water content, blood-brain barrier integrity and vascular permeability, cell apoptosis, and NLRP3 and its downstream protein levels were measured. RESULTS: OLT1177 significantly reduced cerebral edema after ICH and contributed to the attenuation of neurological deficits. OLT1177 could preserve blood-brain barrier integrity and lessen vascular leakage. In addition, OLT1177 preserved microglia morphological shift and significantly inhibited the activation of caspase-1 and release of IL-1ß. We also found that OLT1177 can protect against neuronal loss in the affected hemisphere. CONCLUSIONS: OLT1177 (dapansutrile) could significantly attenuate the brain edema after ICH and effectively alleviate the neurological deficit. This result suggests that the novel NLRP3 inhibitor, OLT1177, might serve as a promising candidate for the treatment of ICH.


Assuntos
Edema Encefálico , Lesões Encefálicas , Nitrilas , Sulfonas , Camundongos , Masculino , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Edema Encefálico/tratamento farmacológico , Edema Encefálico/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Lesões Encefálicas/metabolismo
12.
Angew Chem Int Ed Engl ; 63(17): e202400766, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38438308

RESUMO

Realizing protein analysis in organelles of living cells is of great significance for developing diagnostic and therapeutic methods of diseases. Fluorescent-labeled antibodies with well imaging performance and high affinity are classical biochemical tools for protein analysis, while due to the inability to effectively enter into cells, not to mention organelles and the uncontrollable reaction sites that might cause antibodies inactivation when chemically modification, they are hard to apply to living cells. Inspired by the structure of fluorescent-labeled antibodies, we designed as a universal detection platform that was based on the peptide-conjugated probes (PCPs) and consisted of three parts: a) a rotor type fluorescent molecular scaffold for conjugation and signal output; b) the cell penetration protein recognition unit; c) the subcellular organelle targeting unit. In living cells, PCPs could firstly localize at organelles and then proceed protein specific recognition, thus jointly leading to the restriction of twisted intramolecular charge transfer and activation of fluorescence signal. As a proof-of-concept, six different proteins in three typical intracellular organelles could be detected by our platform through simply replacing the recognition sequence of proteins and matching organelle targeting units. The position and intensity of fluorescence signals demonstrated specificity of PCPs and universality of the platform.


Assuntos
Corantes Fluorescentes , Organelas , Corantes Fluorescentes/química , Organelas/química , Peptídeos/metabolismo , Fluorescência
13.
ACS Nano ; 18(11): 7677-7687, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38450654

RESUMO

Solid-state nanochannel-based sensing systems have been established as vigorous tools for sensing plentiful biomarkers due to their label-free, highly sensitive, and high-throughput screening. However, research on solid-state nanochannels has predominantly centered on the functional groups modified on the inner wall, neglecting investigations into the outer surface. Actually, the outer surface, as a part of the nanochannels, also plays a key role in regulating ionic current. When the target nears the entrance of the nanochannel and prepares to pass through, it would also interact with functional groups located on the nanochannel's outer surface, leading to subsequent alterations in the ionic current. Recently, the probes on the outer surface have experimentally demonstrated their ability to independently regulate ionic current, unveiling advantages in in situ target detection, especially for targets larger than the diameter of the nanochannels that cannot pass through them. Here, we review the progress over the past decade in nanochannels featuring diverse outer-surface functionalization aimed at enhanced sensing performance, including charge modification, wettability adjustment, and probe immobilization. In addition, we present the promises and challenges posed by outer-surface functionalized nanochannels and discuss possible directions for their future deployments.

14.
Radiother Oncol ; 194: 110213, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458258

RESUMO

BACKGROUND AND PURPOSE: Poor penetration of transferred T cells represents a critical factor impeding the development of adoptive cell therapy in solid tumors. We demonstrated that iRGD-antiCD3 modification promoted both T cell infiltration and activation in our previous work. Interest in low-dose radiotherapy has recently been renewed due to its immuno-stimulatory effects including T cell recruitment. This study aims to explore the synergistic effects between low-dose radiotherapy and iRGD-antiCD3-modified T cells. MATERIALS AND METHODS: Flow cytometry was performed to assess the expression of iRGD receptors and chemokines. T cell infiltration was evaluated by immunohistofluorescence and in vivo real-time fluorescence imaging and antitumor effects were investigated by in vivo bioluminescence imaging in the gastric cancer peritoneal metastasis mouse model. RESULTS: We found that 2 Gy irradiation upregulated the expression of all three iRGD receptors and T-cell chemokines. The addition of 2 Gy low-dose irradiation boosted the accumulation and penetration of iRGD-antiCD3-modified T cells in peritoneal tumor nodules. Combining 2 Gy low-dose irradiation with iRGD-antiCD3-modified T cells significantly inhibited tumor growth and prolonged survival in the peritoneal metastasis mouse model with a favorable safety profile. CONCLUSION: Altogether, we demonstrated that low-dose radiotherapy could improve the antitumor potency of iRGD-antiCD3-modified T cells by promoting T cell infiltration, providing a rationale for exploring low-dose radiotherapy in combination of other adoptive T cell therapies in solid tumors.


Assuntos
Neoplasias Gástricas , Linfócitos T , Animais , Camundongos , Neoplasias Gástricas/radioterapia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/imunologia , Linfócitos T/efeitos da radiação , Linfócitos T/imunologia , Imunoterapia Adotiva/métodos , Dosagem Radioterapêutica , Oligopeptídeos , Neoplasias Peritoneais/radioterapia , Neoplasias Peritoneais/secundário , Linhagem Celular Tumoral , Feminino , Terapia Combinada
15.
Artigo em Inglês | MEDLINE | ID: mdl-38411667

RESUMO

PURPOSE: Vascular endothelial growth factor receptor 3 (VEGFR-3) plays a critical role in tumor lymphangiogenesis and metastasis, holding promise as a promising therapeutic target for solid tumors. TMVP1 (LARGR) is a 5-amino acid peptide previously identified in our laboratory from bacterial peptide display system that specifically targets VEGFR-3. Radiolabeled TMVP1 can be used for non-invasive imaging of VEGFR-3 expressing tumors. Homodimeric peptides have better targeting ability than monomeric peptides, and it is worth exploring whether homodimers of TMVP1 ((TMVP1)2) can achieve better imaging effects. This study aimed to explore the peptide properties and tumor assessment value of [68Ga]Ga-labeled (TMVP1)2. METHODS: In this study, we developed a TMVP1 homodimer that was conjugated with 1,4,7-triazacyclononane-N, N', N″-triacetic acid (NOTA) via tetraethyleneglycol (PEG4) and triglyicine (Gly3) spacer, and labeled with 68Ga, to construct [68Ga]Ga-NOTA-(TMVP1)2. Binding of VEGFR-3 by TMVP1 and (TMVP1)2, respectively, was modeled by molecular docking. The affinity of [68Ga]Ga-NOTA-(TMVP1)2 for VEGFR-3 and its ability to bind to cells were evaluated. MicroPET imaging and biodistribution studies of [68Ga]Ga-NOTA-(TMVP1)2 were performed in subcutaneous C33A cervical cancer xenografts. Five healthy volunteers and eight patients with cervical cancer underwent whole-body PET/CT acquisition 30-45 min after intravenous injection of [68Ga]Ga-NOTA-(TMVP1)2. RESULTS: Both molecular docking and cellular experiments showed that homodimeric TMVP1 had a higher affinity for VEGFR-3 than monomeric TMVP1. [68Ga]Ga-NOTA-(TMVP1)2 was excreted mainly through the renal route and partly through the liver route. In mice bearing C33A xenografts, [68Ga]Ga-NOTA-(TMVP1)2 specifically localized in the tumor (2.32 ± 0.10% ID/g). Pretreatment of C33A xenograft mice with the unlabeled peptide NOTA-(TMVP1)2 reduced the enrichment of [68Ga]Ga-NOTA-(TMVP1)2 in tumors (0.58 ± 0.01% ID/g). [68Ga]Ga-NOTA-(TMVP1)2 proved to be safe in all healthy volunteers and recruited patients, with no side effects or allergies noted. In cervical cancer patients, a majority of the [18F]-FDG identified lesions (18/22, 81.8%) showed moderate to high signal intensity on [68Ga]Ga-NOTA-(TMVP1)2. SUVmax and SUVmean were 2.32 ± 0.77 and 1.61 ± 0.48, respectively. With normal muscle (gluteus maximus) as background, tumor-to-background ratios were 3.49 ± 1.32 and 3.95 ± 1.64 based on SUVmax and SUVmean, respectively. CONCLUSION: The favorable characterizations of [68Ga]Ga-NOTA-(TMVP1)2 such as convenient synthesis, high specific activity, and high tumor uptake enable the evaluation of VEGFR-3 in cervical cancer patients and warrant further clinical studies. TRIAL REGISTRATION: ChiCTR-DOD-17012458. Registered August 23, 2017 (retrospectively registered).

16.
ACS Nano ; 18(8): 6570-6578, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38349220

RESUMO

Nanofluidic biosensors have been widely used for detection of analytes based on the change of system resistance before and after target-probe interactions. However, their sensitivity is limited when system resistance barely changes toward low-concentration targets. Here, we proposed a strategy to address this issue by means of target-induced change of local membrane potential under relatively unchanged system resistance. The local membrane potential originated from the directional diffusion of photogenerated carriers across nanofluidic biosensors and gated photoinduced ionic current signal before and after target-probe interactions. The sensitivity of such biosensors for the detection of biomolecules such as circulating tumor DNA (ctDNA) and lysozyme exceeds that of applying a traditional strategy by more than 3 orders of magnitude under unchanged system resistance. Such biosensors can specifically detect the small molecule biomarker in the blood sample between prostate cancer patients and healthy humans. The key advantages of such nanofluidic biosensors are therefore complementary to traditional nanofluidic biosensors, with potential applications in a point-of-care analytical tool.


Assuntos
Técnicas Biossensoriais , Masculino , Humanos , Transporte de Íons , Eletricidade
17.
Anal Chem ; 96(8): 3609-3617, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38364862

RESUMO

Fluorescence imaging-guided navigation for cancer surgery has a promising clinical application. However, pan-cancer encompasses a wide variety of cancer types with significant heterogeneity, resulting in the lack of universal and highly contrasted fluorescent probes for surgical navigation. Here, we developed an aggregation-induced emission (AIE) probe (MI-AIE-TsG, MAT) with dual activation for pan-cancer surgical navigation. MAT weakly activates fluorescence by targeting the SUR1 protein on the endoplasmic reticulum (ER) through the TsG group. Subsequently, the sulfhydryl groups on the unfolded proteins, which are highly enriched in cancer ER, react with the maleimide (MI) of MAT through the thiol-ene click reaction, further enhancing the fluorescence. The formation of a SUR1-MAT-unfolded protein sandwich complex reinforces the restriction of intramolecular motion and eliminates photoinduced electron transfer of MAT, leading to high signal-to-noise (9.2) fluorescence imaging and use for surgical navigation of pan-cancer. The generally high content of unfolded proteins in cancer cells makes MAT imaging generalizable, and it currently has proven feasibility in ovarian, cervical, and breast cancers. Meanwhile, MAT promotes cellular autophagy by hindering protein folding, thereby inhibiting cancer cell proliferation. This generalizable, high-contrast AIE fluorescent probe spans the heterogeneity of pancreatic cancer, enabling precise pancreatic cancer surgery navigation and treatment.


Assuntos
Neoplasias Pancreáticas , Cirurgia Assistida por Computador , Humanos , Corantes Fluorescentes , Compostos de Sulfidrila , Imagem Óptica
18.
Angew Chem Int Ed Engl ; 63(17): e202316551, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38411372

RESUMO

Single-entity electrochemistry is a powerful tool that enables the study of electrochemical processes at interfaces and provides insights into the intrinsic chemical and structural heterogeneities of individual entities. Signal processing is a critical aspect of single-entity electrochemical measurements and can be used for data recognition, classification, and interpretation. In this review, we summarize the recent five-year advances in signal processing techniques for single-entity electrochemistry and highlight their importance in obtaining high-quality data and extracting effective features from electrochemical signals, which are generally applicable in single-entity electrochemistry. Moreover, we shed light on electrochemical noise analysis to obtain single-molecule frequency fingerprint spectra that can provide rich information about the ion networks at the interface. By incorporating advanced data analysis tools and artificial intelligence algorithms, single-entity electrochemical measurements would revolutionize the field of single-entity analysis, leading to new fundamental discoveries.

19.
Glob Med Genet ; 11(1): 86-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38414979

RESUMO

The fusion genes NRG1 and NRG2 , members of the epidermal growth factor (EGF) receptor family, have emerged as key drivers in cancer. Upon fusion, NRG1 retains its EGF-like active domain, binds to the ERBB ligand family, and triggers intracellular signaling cascades, promoting uncontrolled cell proliferation. The incidence of NRG1 gene fusion varies across cancer types, with lung cancer being the most prevalent at 0.19 to 0.27%. CD74 and SLC3A2 are the most frequently observed fusion partners. RNA-based next-generation sequencing is the primary method for detecting NRG1 and NRG2 gene fusions, whereas pERBB3 immunohistochemistry can serve as a rapid prescreening tool for identifying NRG1 -positive patients. Currently, there are no approved targeted drugs for NRG1 and NRG2 . Common treatment approaches involve pan-ERBB inhibitors, small molecule inhibitors targeting ERBB2 or ERBB3, and monoclonal antibodies. Given the current landscape of NRG1 and NRG2 in solid tumors, a consensus among diagnostic and treatment experts is proposed, and clinical trials hold promise for benefiting more patients with NRG1 and NRG2 gene fusion solid tumors.

20.
ACS Appl Mater Interfaces ; 16(8): 10556-10564, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38359102

RESUMO

Janus hydrogels with different properties on the two surfaces have considerable potential in the field of material engineering applications. Various Janus hydrogels have been developed, but there are still some problems, such as stress mismatch caused by the double-layer structure and Janus failure caused by material diffusion in the gradient structure. Here, we report a Janus adhesive-tough hydrogel with polydopamine-decorated Fe3O4 nanoparticles (Fe3O4@PDA) at one side induced by magnetic field to avoid uncontrollable material diffusion in the cross-linking polymerization of acrylamide with alginate-calcium. The magneto-induced Janus (MIJ) hydrogel has an adhesive surface and a tough bulk without an obvious interface to avoid stress mismatch. Due to the intrinsic dissipative matrix and the abundant catechol groups on the adhesive surface, it shows strong adhesion onto various substrates. The MIJ hydrogel has high sensitivity (GF = 0.842) in detecting tiny human motion. Owing to the synergy of Fe3O4@PDA-enhanced interfacial adhesion and heat transfer, it is possible to quickly generate effective temperature differences when adhering to human skin. The MIJ hydrogel achieves a Seebeck coefficient of 13.01 mV·K-1 and an output power of 462.02 mW·m-2 at a 20 K temperature difference. This work proposes a novel strategy to construct Janus hydrogels for flexible wearable devices in human motion sensing and low-grade heat harvesting.


Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Humanos , Hidrogéis/química , Adesivos/química , Temperatura Alta , Movimento (Física) , Condutividade Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...